All About Science

Month: September 2021

Why Science Education is Important in Early Childhood

Science Education | Department of Curriculum & Pedagogy

Young children are naturally inquisitive, full of questions about the world around them, and the drive to investigate how things work. It follows, therefore, that we should take advantage of this innate curiosity and start channeling their enthusiasm for scientific discovery as early on as possible. In this article, we’ll explore some of the reasons why science education is so important in early childhood, and how you can support this in your childcare setting.

The Benefits of Early Years Science Education

Providing opportunities for scientific discovery in early years settings is beneficial to young children in several ways:

1. It can foster a lifelong love of science

Children are programmed to explore and experiment right from the start, even as babies. On the other hand, research suggests that by the age of 7, most children have developed either a positive or negative attitude towards science education that will remain entrenched. So by tapping into their natural predispositions early on, during this key developmental phase, we can nurture and establish a positive approach to science education that will stay with them into the future.

Early Years Science Education - Happy ChildStarting early helps foster a lifelong love of science

2. It gives a basic grounding in scientific concepts and scientific thinking

Even the very simplest activities can introduce children to scientific concepts and stimulate scientific thinking. Early years science education can provide a strong foundation in terms of both what is learned, and how it’s learned, that will stand them in good stead. By encouraging and directing their natural curiosity, and familiarising them with basic scientific vocabulary, early years educators can help children begin to make sense of the world around them, and gain some understanding of how things work.

Sign Up to Receive this 20-Part Activity Email Series

3. It supports the development of other skills and attributes

Science education activities provide children with opportunities to develop and practice many different skills and attributes. These include communication skills, collaborative skills, team working and perseverance, as well as analytical, reasoning and problem-solving skills. Help them expand their vocabulary by using scientific terms that are appropriate for their age group. Encourage them to extend and embed their learning through related literacy, numeracy and creative activities.

Early Years Science EducationScience activities provide opportunities to develop collaboration and communication skills

Taking the right approach to early years science education

When it comes to instigating early years science education in your childcare setting, there are plenty of resources available to get you started, as well as ideas for activities (see, for example, our article on ‘10 Early Years Science Activities EYFS‘). But there are also some key considerations to keep in mind:

  • The process is more important than the results: although it’s really valuable for the children to gain some scientific understanding along the way, finding the ‘right’ answer should not be your topmost objective; the main goals are to channel their curiosity, and to foster their investigative skills.
  • Be open to child-led discovery: as well as organising specific activities for the children to participate in, try to look out for spontaneous, daily opportunities for scientific discovery, guided by you but ultimately led by the children. Encourage them to always experiment and ask questions, and make sure you have plenty of resources available for them to use.
Early Years Science EducationChild-led discovery activities are a great way to encourage scientific curiosity
  • Offer active, fun, hands-on experiences: most young children love physical exploration – the messier the better – so if you can tap into this, their favoured learning style, you’ll find it much easier to engage them and maintain their interest. Keep activities short and varied, and always make sure that there is plenty of opportunity for active, first-hand involvement for everyone.

The Use of Science in Environmental Decision Making

A Student's Guide to Conservation and Environmental Science - Best Degree  Programs

The level of scientific literacy in the United States is low by so many measures there isn’t a reason to rollout the data on science education in the United States to make the point. With a determined effort, we could overcome our science literacy problem, but I see no sign of deep concern about the state of science education. The impact of our lack of science literacy can be seen in decision making in the White House and in regulatory agencies like EPA that are aggressively resisting science. Environmental science is seen as biased and even anti-capitalist. I’m certain this is the result of climate and other environmental scientists expressing their alarm about the impact of pollution on the planet and their effort to communicate that threat. Instead of debating the validity of scientific findings on scientific grounds, some people reject environmental science entirely. This exacerbates our science literacy problem and is profoundly troubling.

We live in a complex world, built by centuries of scientific advances from the Enlightenment to the present. That world provides enormous benefits like the computer I am writing this on, but also creates enormous risks ranging from global warming to biodiversity loss to exposure to toxic substances. We rely on science for our comforts and economic advances, but also for the analysis of risk and methods of mitigating or reducing risk. To some, the science that yields economic benefit seems pure but the science that identifies potential costs seems biased.

Science is not without value choices and ideology. The problems that scientists choose to study reflect what they consider important and what they consider to be important reflects their values. An earth scientist’s values may simply be the advance of human knowledge about how the earth works and may have little connection to any concerns about the impact of humans on the planet’s well-being, but even the goal of advancing knowledge must also be seen as a value choice. While values play a role in science, the scientific method places a high value on the role of measurement and observations. In other words, a high value is placed on verified facts and observations. Good science tries to reduce bias. The scientific method itself, the importance of replicability, peer review and other standards of scientific inquiry are designed to make it possible to establish facts. These methods are reasonably clear, and most scientists and students of science know how to distinguish sound science from unsound science. But scientific illiterates, like President Donald Trump and a number of other government and business leaders, can’t distinguish sound science from unsound science and they assume that environmental science reflects the biases of the “ideological” scientists who choose to study environmental issues.

Some political leaders assume that scientific analysis is like political analysis, subject to spin and a wide range of interpretations. While new discoveries and observations may be interpreted in a variety of ways, the goal of science is to achieve consensus. Scientists read the challenges to their work and learn from critiques and from each other. That is a key way that scientific knowledge expands. A competent doctor will encourage patients to get a second opinion of a diagnosis. In fact, they will engage colleagues in that effort before informing a patient of their diagnosis.

While science operates according to a carefully constructed and reasonably well understood set of norms, it can and has been corrupted by economic power. Tobacco interests were famous for paying scientists to downplay the connection between smoking and lung cancer. Most recently we saw the conflict between sound science and economic interest in EPA as that agency tried to decide how to regulate asbestos. Lisa Friedman of the New York Times reported last week that:

Celebrating Earth Day & the Environmental Benefits of Electricity -  Carolina Country

“Senior officials at the Environmental Protection Agency disregarded the advice of their own scientists and lawyers in April when the agency issued a rule that restricted but did not ban asbestos, according to two internal memos…Andrew Wheeler, the E.P.A. administrator, said when the rule was issued that it would significantly strengthen public health protections. But in the memos, dated Aug. 10, more than a dozen of E.P.A.’s own experts urged the agency to ban asbestos outright, as do most other industrialized nations…It was not the first time administration has sidelined government scientists. Under President Trump, the E.P.A. has rolled back environmental protections and come under criticism for relaxing rules on toxic chemicals. Last month, the agency weakened a proposed standard for cleaning up groundwater pollution caused by toxic chemicals. In March, it scaled back a proposed ban on a deadly chemical in paint strippers. And it has rejected a proposed ban on the use of chlorpyrifos, a pesticide that has sickened farm workers and been linked to developmental disabilities in their children…”

The Trump EPA rarely misses an opportunity to tilt a regulation away from human and environmental safety toward a narrow but well defined economic benefit.  During the 2020 presidential campaign, we will hear that this anti-regulatory zeal has contributed to the business confidence that has contributed to the economic growth we have seen during the Trump Administration. While the idea horrifies me, business antipathy to regulation seems hard-wired into America’s culture. The counter to that cultural norm takes place when there has been an empirical demonstration of harm. When the same type of Boeing jet crashes twice within months for reasons that seem suspiciously similar, business leaders join the public in a call for greater government oversight.

We put our faith in companies and governments to protect us against potential risks we don’t understand in order to benefit from products and services that provide the benefits we want. It is a science that creates the technologies we don’t understand but benefit from and it is a science that must be relied on to alert us to the risks of these technologies. But the system breaks down if the science is not objective, not understood, or ignored.

The risks caused by toxic substances in our environment, or by pollutants like greenhouse gases, are complicated. Sometimes causality is difficult to prove. Sometimes danger is in the future and models must be developed to project future harm. The danger to children of lead in water is long-term and may not be immediately obvious. The impact of smoking on your lungs is also not immediate. The danger of flawed software in an airplane is sadly more immediate and the outcome more dramatic. Biodiversity, on the other hand, is maintained by a complex web of biological and chemical relationships that scientists can spend a lifetime studying and still know only a fraction of the reality of risk posed to any given ecological system.

What decision-makers need is at least a minimal understanding of chemistry, biology, physiology, physics, and ecology to undertake sophisticated and effective environmental decision-making. They also need to value the preservation of the planet for posterity. The need for a viable planet is obvious to many people, but not to everyone. Jeff Bezos recently presented his vision of space travel that would create artificial environments in outer space for a trillion earthlings. I guess a trillion would include a lot of Amazon Prime customers. According to a recent piece by Kenneth Chang of the New York Times:

Premium Photo | Environment earth day in the hands of trees growing  seedlings.

“Mr. Bezos described on Thursday a dreamy, ambitious vision of the future: a trillion people in space, living not on moons or planets, but bucolic space colonies…He spent the first half of the presentation selling the idea of space and countering criticisms that space exploration is a frivolous pursuit that diverts people’s attention from pressing problems on Earth. But he argued that humanity must eventually push into space. Rising energy consumption is crucial to raising the standard of living for more people, but “We will run out of energy,” Mr. Bezos said. “This is just arithmetic. It’s going to happen.”At that point, to remain on Earth would require rationing and declining opportunities. But the rest of the solar system offers virtually limitless resources. “Do we want stasis and rationing or do we want dynamism and growth?” he asked rhetorically. “This is an easy choice. We know what we want. We just have to get busy.”

It may be that someday we will develop the technology to live in outer space, it may be that we will so poison the planet that we’ll have no choice. But the scientific case made by Bezos claims that we will run out of energy. That is a scientific conclusion that may well be worthy of study. But Bezos cites no study when he makes the claim. He might want to take a closer look at the sun as a source of energy. Other decision-makers have dismissed climate change, the impact of asbestos, smoking, and countless other dangers. They assert scientific conclusions that fit into their plans to accumulate money, power, or both. We need to do a better job of integrating scientific knowledge into management decision-making. If we don’t we will leave ourselves open to sales pitches ranging from Bezos futuristic vision to Trump’s more nostalgic rap. The world is too complicated, interconnected, and dangerous to act without real scientific observations and analysis. Contact us for more information.


Impact of Information Technology on Society

Information has become an important part of our daily lives and we are living in the age of information. Information has a great impact on our society. Technology is playing a crucial role  in the success of organizations in the ‘information age.’ The changing times and the invention of the computer have transformed every aspect of our society. However, the rapid growth of technology has both positive and negative aspects in our lives. Information technology is a broad subject concerned with all aspects of managing and processing information, especially within a large organization or company. IT is generally not used in reference to personal or home computing and networking.

The impact of Information technology is increasing day by day. Every day, we use Information technology in several ways. Computers are highly affordable and thus reach a larger number of consumers. IT has not only brought the world closer but also made it an interdependent system.  It means we can share information quickly and effectively, without bothering about geographical distance.

With the help of IT communication has become cheaper, faster, and more efficient.  With the help of the internet, direct, face-to-face communication has become so easy. Even mobile phones have become cheaper, which have modern facilities to communicate effectively.

The most important of IT has been the job recruitments. Student study IT and thus the rate of employment is increasing with time. Youths are highly inclined towards IT as it has a wider scope of jobs openings. Employment opportunities are also rising.

Industry experts believe, that technology keeps on changing every day. Thus, to keep pace IT practitioners need to constantly study and keep themselves updated with the change for their job security.

It is a true fact that we are living in the era of computers and technologies. The impact of these new technologies is enormous. In many aspects we find IT solving complex problems very efficiently. With increasing technologies, the world is now a smaller and united place to live in.

You can contact us for clearer information.

The Role of Science in the 21st Century

The challenging environment for science in the 21st century

The Look and Feel of 21st Century Science | by Joe Brewer | Age of  Awareness | Medium

Successful universities the world over are deeply connected with the social, economic and political environment in which they serve. However, universities should also operate independently as they are not factories or political tools, and they do not need charismatic leaders the way armies and churches might.

Universities are collectives, and open, critical discourse based on democratic principles is essential for their success. As part of their time-honoured compact with society, universities should not blandly surrender to outside pressures, but actively and critically engage with them.

Social and political context

There are an increasing number of national imperatives that universities need to consider in deciding how to position themselves. For instance, since the dawn of South Africa’s democracy, there has been a push to broaden access to higher education in order to accommodate more students with different prior experiences, different goals and ambitions, and different levels of preparedness. Importantly, transformation of our universities has included calls to diversify the professoriate and to change the culture of universities.

The weak South African economy suggests that the country’s universities should prepare their students more directly for the job market. There are cries for a stronger focus on practical skills development, almost akin to vocational training. There is an expectation that academics and researchers should make more direct contributions to marketable innovations, and be more inventive with developing practical applications and solutions to everyday problems.

Funding agencies call for research programmes with more direct relevance to South Africa. There are, thus, enormous pressures for curriculum reform, and invariably arguments for decolonisation, with all its political ramifications.

Coupled to the above, a burgeoning agenda for African development is being set by the African Union’s Agenda 2063, and looking further afield, the global socio-economic and political environment for change is being defined fairly comprehensively by the United Nations’ Sustainable Development Goals. These are further considerations that universities are being asked to take on board to frame their research and teaching programmes if they are going to be relevant in the future.

Politicisation of research

Bringing 21st-century science into schools -

The challenges for science in the 21st century do not end there. A real problem today is that truth is increasingly being undervalued, and scientific research is becoming politicised, for example, in the context of climate change. This is a scourge that is spreading world-wide.

The efforts required to advance knowledge for societal benefit are not always understood and appreciated by society, including by decision-makers. The need for an independent, critical academy is not always appreciated and, on the contrary, is often seen to be a threat by many autocratic regimes.

It is becoming difficult to discriminate between real and bogus information ‘out there’ because much of the information on the internet has not been sufficiently tested for veracity and truth. Lies can be propagated at a phenomenal rate. For universities, which should pride themselves on uncovering the truth, this is debilitating. In this environment, it is also becoming more difficult to counter plagiarism and protect intellectual property – matters that are of profound importance for our universities.

Most, but not all, citizens of the world have free and easy access to information, which begs the question: “Are our universities becoming less relevant?” They will be if educational and research systems are not adjusted. We certainly need more discussion on how universities should change, and this will remain a hotly contested area in planning for the future of universities for many years to come.

Global challenges

There is a growing number of substantive challenges in academia. Across a majority of disciplines, we are moving into the era of extremely large data sets, calling for smarter and more secure means of storing and transporting data, as well as accessing and mining data intelligently for research and decision-making.

This means that an increasing number of researchers across many different disciplines, including the humanities and social sciences, need to become more computationally competent. In addition, these researchers need to be preparing to work in larger, multidisciplinary teams to resolve quantitative problems more effectively. While this need is set to grow, this transition is arguably not happening fast enough.

The world-wide science system has become enormous, and it is proving to be extremely difficult to keep up with research outputs in one’s own narrow research area of interest, let alone more broadly. The flood of information is overwhelming and we need smarter ways to keep up, or else we run the risk of duplicating efforts and falling behind.

On the topic of peer-reviewed publications, it has finally dawned on academics and universities that they should not be paying exorbitant costs to access publicly-funded research and in so doing enrich large corporations. The entire world of publications in this age of the internet is in a process of radical change. Academics need to seriously contemplate the pros and cons of open access, and actively participate in the global discussions currently taking place, for example, around the proposed European Plan S.

Developing science responsibly

There are enormous disparities in science around the world, which demand that we think more deeply about how we develop science more extensively on a global scale for the good of all of humanity.

The big science questions need big – meaning expensive – research infrastructures. This calls for large, multidisciplinary teams and multinational collaborations. We must ask how we can participate more effectively, especially from the southern tip of Africa. The rest of Africa is falling behind because there has been relatively little commitment from many African countries to invest in scientific research infrastructure and in people development. This will continue to hold Africa back.

South Africa is globally connected though the internet, which means that the country is also susceptible to international terror through breaches in cybersecurity. The ways in which some international agencies and governments are protecting themselves against cyber-attacks are top secret for obvious reasons, which means that many countries in the developing world are left in the dark and will need to figure out their own solutions. African countries and their universities need to invest in their own programmes to interrogate cybersecurity for their own well-being and national security.

Open-ended, unfettered science in its purest form has, over the centuries, been pursued in the interests of understanding nature in a fundamental way, and long may that continue. Scientific ideas and discoveries have often been very successfully exploited for commercial gain and societal improvements, and much of the science system today the world over is designed to push scientists in the direction of more relevance. The applications of science coupled with critical thought have been essential in solving many problems facing society.

Usually, that impact has been positive, but not always. There has been collateral damage and unintended consequences along the way; for example, plastics in our oceans, and other harmful environmental effects. The military has been a strong supporter of science in many countries, including during apartheid South Africa. Science has been driven in particular ways to gain superior might. Many authoritarian states, such as North Korea, have invested significantly in a very narrow set of scientific endeavours and technologies with a singular purpose in mind.

Through the millennia, there has always been the potential for scientific outputs to be misused, from the time the simple domestic knife was invented. Science in the wrong hands can be catastrophic – and a climate for the misuse of science is growing.

Limited global resources

Some of the more difficult questions that academics need to think about relate to the consequences of the rapidly increasing global population and the stress this places on our resources and environment. This is already resulting in a power struggle for limited resources. The future of the human race depends on scientists finding more intelligent answers to difficult questions, and here researchers have a central role to play.

With the rapidly increasing world population one can conclude that, purely from a statistical viewpoint, each life is becoming less significant. It should boggle the mind, then, to think about what this could imply in terms of the potential for increased unethical behaviour towards our fellow human beings, for example, in terms of mass exterminations, human experimentation and cruelty.

We should think deeply about this and how academics can try to counter these tendencies in their work – by identifying the problem early on, and proposing solutions before the problem gets beyond our control.

History will show that so much has been accomplished by so few with so little over the past 100 years. This period has been unprecedented in the history of the human race. It is difficult to believe that the electron was discovered just over 100 years ago, and through science and the applications of science, technology, industrialisation and commercialisation, and sheer ingenuity, humans have been able to harness the fullest potential of the electron to fundamentally change the way in which we live our lives, not only in a technical sense, but also in a social sense. This tiny particle has come to define our age, namely the electronic age.

This stunning growth over a short period does raise unrealistic expectations that new scientific ideas and technologies needed to solve challenges in the 21st century will emerge just as easily, just as rapidly and just as cheaply, with the snap of a finger, so to speak.

But that is not correct.

Support for science

Our universities are working under extremely tight fiscal constraints. Academics are being asked to do much more with much less at a time when our universities are under enormous pressures to be ‘world class’. Science needs much more support for the public good.

In striving to be nationally responsive and world class, South African science must be connected with the global environment that frames science. We should be consolidating and setting the foundations to be world class. We need to be excellent in all aspects of the academic enterprise including our management, operations, teaching and learning, research and external engagements.

Universities in South Africa have been in a state of stress for a while, and one wonders whether an era of stability is possible in which to focus on core functions.

A successful and prosperous South Africa depends on a modern, scientifically literate and technically competent workforce, and here, universities have a central role to play. They are a precious resource.

Stakeholders need to engage more intelligently and constructively with each other within and without the university, or the idea of the university will be under threat. We are but temporary custodians of the institutions we inherit. The hope and expectation are that we will build on the foundations that have been laid by others over the years, and to leave it in a better state than we found it.

Contact us for more information.

Nithaya Chetty is professor of physics at the University of Pretoria and dean-elect of the faculty of science at the University of the Witwatersrand in South Africa. He is vice president of the International Union of Pure and Applied Physics. He writes in his personal capacity.